PHYSICAL REVIEW B

VOLUME 1, NUMBER 6

Vacancy Transients During Impurity Diffusion in Semiconductors

S. M. Hu* anp M. S. Mock
IBM Components Division, East Fishkill Facility, Hopewell Junction, New York 12533
(Received 14 November 1969)

Vacancy transients associated with the diffusion of donor atoms in semiconductors are examined for a
model of strong vacancy-impurity association. The causes for the vacancy transients are the drift of charged
vacancies in the internal field and the shifting of the local thermal-equilibrium condition of vacancy con-
centration. The impurity is considered to diffuse into a semi-infinite solid with a constant surface concen-
tration. Simultaneous equations of continuity for the impurity and the vacancy are obtained from phe-
nomenological flux expressions, and their Boltzmann transforms are solved numerically. For the example
studied, which is typical of donor diffusions in silicon, the maximum vacancy undersaturation was found
to be 4.17X1077. An inequality estimation gives ¢ $8D4(0)/D,, where ¢ is the vacancy supersaturation
(negative in the present case), D4 (0) is the impurity diffusivity at the surface, and D, is the vacancy dif-
fusivity. It is concluded that, during impurity diffusion, the departure of the vacancy concentration from
its equilibrium value is entirely negligible for the model concerned. It is also pointed out that the cross
coefficients of the phenomenological flux expressions are dependent on an atomistic model. For example,
it is shown that if Seitz’s chemical-pump model is assumed, then there will be significant vacancy
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nonequilibrium.

I. INTRODUCTION

N a diffusion which proceeds by means of a vacancy
mechanism, the diffusivity of the diffusant is usually
some function of the local vacancy concentration, the
function being definitive for a specific atomistic model.
Thermodynamical analyses of the equilibrium vacancy
concentration as a function of the diffusant concentra-
tion in the semiconductor are available in the litera-
ture.l2 However, no quantitative study has been pub-
lished on the possible departure of the vacancy concen-
tration from its equilibrium value during the impurity
diffusion. To study vacancy transients, one can proceed
by constructing equations of continuity from the linear
phenomenological equations

Ji=% LiX;, 1)
J

where J; is the flux of the ¢th component and Xj in the
present paper is given by —du;/dx, u; being the chem-
ical potential of the jth component. L;’s are the
matrix elements of the phenomenological coefficients.
We consider i, j=A4, B, v, representing, respectively,
the impurity, the host lattice, and the lattice vacancy
which form a ternary system. One problem hitherto has
been how to obtain a self-consistent set of phenomeno-
logical coefficients, and the question of vacancy tran-
sients has remained rather academic. In a broader
sense, this problem has recently been solved? for the
ternary system A-B-v by establishing the relationship
between the off-diagonal elements L;;(i5j) and the
diagonal elements; and in a definitive sense, for the case
where there is a strong association between the impurity
atom and the vacancy. Historically, the problem of
* Presently on visiting assignment at the IBM Thomas J.

Watson Research Center, Yorktown Heights, N. Y. The joint
project was started while this author was at IBM East Fishkill

Laboratory.
1 R. L. Longini and R. F. Greene, Phys. Rev. 102, 992 (1956).

2 S. M. Hu, Phys. Rev. 180, 773 (1969).

vacancy transients was first treated by Seitz? in con-
nection with his explanation of the Kirkendall effect.
His analysis leads to the following expression of vacancy

flux:
J»= (DA—-DB)(aNA/ax) —Dvan/ax, (2)

where D is the diffusivity and N is the concentration,
with subscripts denoting atomic species. Seitz called the
first term in the right-hand side of Eq. (2) the chemical
pump. The inadequacy of Seitz’s analysis has been
discussed in Ref. 2 and is the consequence of the
existence of a correlation effect in both the impurity
and the vacancy random walks. The kinetic origin of
Eq. (2) assumes a probability N4V, (unnormalized),
of which 4 is neighboring to v and an event of impurity
jump occurs with a frequency ws. This implies that,
after each impurity jump, the vacancy immediately
randomizes itself into the bulk of the lattice, which is
physically impossible. The tight-binding approximation
treated in Ref. 2 represents the opposite extreme case,
but, in contrast, is of probable physical existence. In
fact, we may argue that this model is appropriate to the
diffusion of donor impurities in semiconductor silicon,*
which will be the subject of the present treatment.
Diffusion-induced vacancy transients arising from
nonvanishing off-diagonal elements of the phenomeno-
logical coefficients may be called intrinsic. We may call
extrinsic vacancy transients which are not part of a flux
expression, and which come from a source term in the
equation of continuity. The source may, for example,

8F. Seitz, Phys. Rev. 74, 1513 (1948); Acta Cryst. 3, 355
E19§§§; Acta Met. 1, 355 (1953); J. Phys. Soc. Japan 10, 697
1955).

4 For example, impurity-vacancy complexes at low tempera-
tures have been discussed by Mitsuji Hirata, Masako Hirata,
H. Saito, and J. H. Crawford, Jr., J. Appl. Phys. 38, 2433 (1967).
One also expects complexes to exist at higher temperatures. One
would also expect the tight binding between the impurity ion and
the charged vacancy to arise partly from the Coulombic interaction.
?ee also E. L. Elkin and G. D. Watkins, Phys. Rev. 174, 881

1968).
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be the nonconservative motion of dislocations as dis-
cussed elsewhere.5 The present discussion is restricted
to intrinsic transients.

II. DIFFUSION EQUATIONS

Following Ref. 2, we can write a set of linearly in-
dependent flux expressions for the ternary system
A-B-v as follows:

AVA A’TA l¢] ln'yA (91\711
Ta= -—DA*—<1+ ——><1+ A—>~— : 3)
N* N3 dInN 4/ ox
A’Tq, 0 ln'YA A\’YS [¢) ln'yv \a;VA
Jy=—D}* ( 1+ —
N\ 9InNs  NsolnN./ ox
v,
—*D,,* y (4)
ox

where v denotes the activity coefficient, the asterisk
denotes equilibrium under intrinsic conditions, and N g
denotes the concentration of lattice sites. More specif-
ically, we consider the impurity 4 to be a donor and B
the semiconductor silicon. Making the approximations
of local charge neutrality and of nondegeneracy, one
has?
dlny, dlny,s

oInN; olnN,

d (EF—EF*
T 9InNL\ kT )

g[1+(?)]/ (5)

where #; is the intrinsic carrier concentration at the
diffusion temperature and Ep is the Fermi energy. The
term [ 14 (2n;/N 4)?1~V/2 approaches unity for N . >2n;,
and reduces to N4/2n; for N4<2n; Thus, the third
term in the parentheses of Eq. (4) becomes —Ng/N 4
for large N4 and —Ng/2n; for small N4. Since, under
realistic conditions, Ns&>>N 4 and Ng>2#n;, this term
dominates the quantity in the parentheses in Eq. (4).
Equation (4) may, thus, be approximated by

N,, alnyt (-)NA

IN,
Jo,=—D* D* . (6)
N4 90InN, ox ox

The first term in the right-hand side of Eq. (6) can be
easily identified (if one so prefers to the thermo-
dynamical concept) with the rift of negatively charged
vacancies in the internal fisld due to N4(x). Since
dlny,/dInN4 and dN4/0x have the same sign, the
field-drift vacancy flux will bz opposite to the direction
of J 4. However, due to a very large D,* and the gradual

5S. M. Hu and T. H. Yeh, J. Appl. Phys. 40, 4615 (1969).
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decrease of | 9N /x| with time in the region of small ,
one should expect the term D,*dN,/dx to dominate and
the vacancy flux direction in the region of small % to
reverse. Quantitative results aside, the conclusion to be
reached later in this paper will not be affected by the
assumptions of local charge neutrality and non-
degeneracy. Using Eq. (5), one can write the equations
of continuity for N4 and N, from Egs. (3) and (6) as
follows:

ON 4 d (N,
M 2|5,
ot dx [V *

Ni PNs
+ } , (1)
(N 2+4n2)2] ox

aN, [N, N, IN 4
ox (17\7112-,-4%1'2)1/2 ox

ot ey

We consider the case defined by the following initial
and boundary conditions:

NA(x:O)ZO: NA(O,t)‘—‘NA,o, NA(oo’t)z()’ (9)
N,,(x,O)‘——Nv*, Nv(o)t)sze7 Nv(oo :t)=N'v*: (10)

where NV,¢ is the equilibrium vacancy concentration,
2°=7,"N,*, and isTa function of N4. Under the

assumptions leading to_Eq. (5), the equilibrium vacancy

concentration at the surface can be expressed as

ZVP(O,t)=N1,e(NA,o)
=N Na/2n~4 (1+N2/4n2) T2, (11)

We introduce two dimensionless variables 6 and o,
defined by

0=N4/2n:4 (1+N42/4n2)V2, N,=N,*0(1+0).

From Egs. (11) and (12), one sees that o is an explicit
expression for the departure of the vacancy concentra-
tion from its equilibrium value; i.e., o= (¥,/N,°—1).
The purpose of introducing ¢ is to effect an accurate
solution in anticipation of a very small deviation of the
vacancy concentration from equilibrium. In terms of
these variables, Egs. (7) and (10) become

(12)

ad a a40?
—(0—67) =Da*——((1+<r)——) ; (13)
9t dx dx
a d / do
—[6(1+0)] =D,,*k(0~) , (14)
ot dx\ dx
0(0,0) =N 4,0/ 201 +N a,0%/4n2) 12, .
0(x,0) =0(e0 ) =1, (15)
o(,0) =0(0,)) =a(,) =0. (16)

Rigorously speaking, our flux expressions from the
phenomenological equations are formulated in a fixed
spatial coordinate system in which the sum of fluxes
(Ja+Jp+Jv) across any plane (except the surface
plane) perpendicular to x is zero. It is tacitly assumed
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that only vacancies and impurity atoms, but not host
lattice atoms, can flow across the surface. Since, in
general, the sum (J4+J,) at the surface will not be
zero, the conservation of lattice sites in a plane demands
the surface to move relative to the fixed coordinate, and
we have a moving-boundary problem. However, an
approximate estimation gives a movement of the
boundary on the order of (772N 4,0/Nis)2(Dat)t2,
which is less than 19, of the impurity diffusion length
under typical conditions. This justifies the assumption
of a fixed boundary at x=0.

The set of equations (13)-(16) admits a Boltzmann
transformation. Defining = /12 and denoting differ-
entiation with respect to n by primes, one obtains

29(0—6"1)'+Da*[(140)(6%)' ] =0, 17
29[0(1+0) 1 +D,*(85")' =0, (18)
0(n)=80oat p=0, 0O(n)=1asx—x, (19)
o(n)=0at y=0 and o, (20)
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While an analytical solution to Egs. (17)-(20) appears
unavailable, an upper bound for |¢| can be estimated
using inequality relations. It is shown in the Appendix
that |¢| £8D4(0)/D,, which is negligibly small.

III. NUMERICAL RESULTS

Numerical solutions of the continuity equations
(17)-(20) have been obtained using finite difference
approximation. The enormous difference between D 4*
and D,* results in a vacancy diffusion length a few
orders of magnitude larger than the impurity diffusion
length. This has required the use of a nonuniform grid
point spacing and difference approximations which have
recently been utilized in degenerate boundary-value
problems.®7

In the example calculated, we have considered a case
characterized by these physical parameters: D 4*= 10~
cm? sec™!; D,*=107% cm? sec™!; N4 ,0=2.5X10% cm3;
N, *=10 cm™3; 7;= 10" cm3. These values of rounded
figures are considered to be appropriate to diffusion in
silicon between 1000-1100°C. The value of #; was from

1/1000
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F16. 1. (a) Fractional departure of vacancy concentration versus 7. (b) N4(r) versus N,(n) [see ¢(n) in (@)].

¢ H. J. Kushner, SIAM J. Num. Anal. 5, 664 (1968).
7C. D. Hill, SIAM, J. Num. Anal. 5, 717 (1968).
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Morin and Maita®; D 4*is of typical experimental values
of group-V donors®; N,* is estimated from the calculated
energy of vacancy formation! of 2.35 eV; D,* is ob-
tained from the relationship D,*N,*= Ds*N g, where
Dg* is the silicon self-diffusivity, and is given an
approximate value'! of 107% cm?/sec; and Ng, the
concentration of lattice sites, is taken to be 5.5X10%2
cm—3. The results of the numerical computation are
shown in Figs. 1(a), 1(b), and 2.

In Fig. 1(a), the fractional departure of the vacancy
concentration from its equilibrium value, the latter
being a function of local N (), is plotted against 5. In
this example, we obtained a maximum |o| of (4.17
+0.05)X1077. The error estimate given is empirical,
based on successive calculations with different numbers
of grid points. ¢ is negative everywhere except at the
boundaries, indicating a general vacancy undersatura-
tion at all times during the diffusion process. However,
o is so small that its effect on the impurity diffusion is
entirely negligible.

The vacancy flux J, normalized by a factor of /2, is
also plotted in the same figure to show the spatial
relationship of ¢ and J,. The results show that the
vacancy flux is in the outward direction in the region
of large 5, and there is a reversal of flux direction in the
region of small 9. The point of zero flux x(J,=0) moves
in with #/2, as demanded by the J,f/%-versus-n plot.
Figure 1(b) shows the profiles N 4(4) and N,(y) in the
same example and serves to connect the spatial relation-
ship between N 4(n) and ¢(5) in Fig. 1(a). These N 4(»)
profiles are the same to the extent of numerical accuracy
with those calculated on the assumption of local vacancy
equilibrium.!? Figure 2 shows a log-log plot of
(J»+3X103) versus « at a diffusion time of 1 sec. The
constant of 3X10% cm™2 sec™! was added to J, to make
possible the representation of J, in the log-log plot in its
full range including negative values. Even with a value
of ~7X107 cm~2 sec™! at the surface, J, is very small
in comparison with the impurity flux J,~10" cm™2
sec™! at the surface.

IV. DISCUSSION

In the preceding sections, a quantitative study has
been made on the vacancy transient phenomenon and
the extent of the induced vacancy concentration under-
saturation during a diffusion process. The results show
that the fractional departure of the vacancy concentra-
tion from its local equilibrium value is negligibly small,
with a maximum ¢ of —4.17X1077 for the example
studied. An inequality estimation of the upper bound

8 F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).

9 For example, see B. I. Boltaks, Diffusion in Semiconductors
(Academic Press Inc., New York, 1963).

1 For example, see A. Seeger and M. L. Swanson, in Lattice
Defects in Semiconductors, edited by R. R. Hasiguti (University of
Tokyo Press, Tokyo, 1968), p. 93 ff.

(19116 ;) M. Fairfield and B. J. Masters, J. Appl. Phys. 38, 3148

12S. M. Hu and S. Schmidt, J. Appl. Phys. 39, 4272 (1968).
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Fi16. 2. Log-log plot of (J,+3X10%) versus x at a diffusion
time of 1 sec.

for |a| is O(8D4/D,*). This justifies the assumption of
an equilibrium vacancy concentration during the
diffusion process. Quite obviously, the theory of
equilibrium vacancy concentration using the assump-
tions of local charge neutrality and of Boltzmann
statistics is itself a grosser approximation.

The preceding analysis is based on the tight-binding
model of impurity diffusion of Ref. 2. This model is
considered to be appropriate for the diffusion of substi-
tutional impurities in semiconductors. In cases where
this model becomes inappropriate, the conclusion
regarding vacancy undersaturation arising from in-
trinsic transients would be different. We may examine
the extreme case of Seitz’s chemical-pump model® which,
though physically unrealistic, may nevertheless serve
to demonstrate certain model processes in which
significant vacancy undersaturation can occur. We
rewrite Eq. (2) in the following form of equation of
continuity:

60' 80’ 60 (DA—DB) 1 6 VA
v‘( - — ) . (21)
ot Jox

dx D, N ox

We may assume N4(y) to be bounded such that
Ng,o>Na(n)>0, and to practically vanish at
712,0(D4'?). The boundary conditions for o are o(x,0)
=0(0,/)=0(,)=0, and the Boltzmann transform of
Eq. (21) is

—2q90'= D" —[(Da—D3p)/N,*IN4". (22)

Equation (22) is a linear differential equation of the
first order in ¢’ and can be twice integrated directly to
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a(n)=3V/(m)

D,s—Dg

DN *

* p
X { —erfno/ N 4" (p)er?Ino? erfc(-—)dp
0 M0

K p n
—I—/ NA"(p)eﬂz/Wz[erfc<—>—erfc(—):ldp] , (23)
0 7o no.

where no=D,'2. For values of 77, Eq. (23) reduces
to

o(n)~—[(Da—Dg)/D,N,*]
XAN 4(0) —[14-0(n/10) IN 4()} +0(n%/10%) .

It is then easily seen that a limiting value of ¢ exists at
some 7=0(D 4?7, at which Eq. (24) becomes

Omin =~ — (DA '—DB)ZVA ,0/(szvv*)
= —(D4—Dgp)N4,0/DsNs, (25)

for we know at some n=0(D4Y2%), Na(n)/N4(0)=0,
and that D, is several orders of magnitude larger than
Dy.

One may quickly notice that for entirely possible
physical cases where (D4 —Dg)N 4,0/ DsN s> 1, Eq. (25)
would give omin<—1, meaning the existence of a
negative vacancy concentration, which is physically
impossible. The explanation lies in the failure of the
simple model of Eq. (2) under the condition of significant
nonequilibrium vacancy concentration. This physical
defect of the model can be removed (while the correla-
tion effect remains neglected) by modifying Eq. (2) into

Jo=(Da—Dg)(No/N,*)(ON 4/0x)—D,dN,/dx. (26)

(24)

Either with Eq. (2) or (26), a considerable vacancy
undersaturation can be expected if (D4—Dg)N 4,0/
(DsNg) is not negligibly small compared to unity. In
binary metal alloys, where both the impurity and the
vacancy concentrations are high, one may expect
considerable extent of vacancy nonequilibrium. These
form the classical examples in the study of the
Kirkendall effect, but are complicated by the presence
of dislocations.

APPENDIX : ESTIMATION OF
UPPER BOUND FOR |o]|

A knowledge of the general characteristics of the im-
purity profile N4(X) allows us to make the following
assumptions:

() 6(n)<6(0),
(b) ¢'(n)<0, (A1)
(© 6(m)~1 for n>»*,
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where 7* is some point sufficiently larger than the
impurity diffusion length. »*, in general, will be a few
orders of magnitude smaller than +/D,. The following
conditions are readily established:

@) (<0,
(b) o(n)>—1,

(¢) () has no local maximum and has a
unique minimum at 7,

(A2)

(@) o(n) is a complementary error function
for n>7*; thus, 7<7*, since erfc has no
local extremum.

Condition (d) in (A2) is a consequence of (c) in (A1)
because, then, Eq. (2-12) reduces to

290’4+ D,*e"'=0, >q9*.
With ¢(«)=0, (A3) admits a solution of the form
a(n)=K erfc(n/~/D,*), n>n*

where K is a constant determinable by matching the
solution for n<7n*. We rewrite Eq. (18) in the following
form:

2
[0 e 1Pv* ] = — 51*0’(1—{-0)@'12/%*

v

(A3)

(A4)

n
< —f—enIDv*,

(AS)
Integrating (AS) from 7 to 7, using ¢’(7)=0, we obtain

! n2 * ! 2’1 2 *
—f@g’en /Dy S (__.9/)—_6”1 IDv dn
v D*

v

25 7
< 2 ome [ g
D.* "

27
S R, (A6)
or
7 29

— o' < —— eGP DF L i ID (A7)

Integrating from O to 5, we obtain

272

lo(m|< E—D*e;’zm”* . (A8)

We estimate %2 to be of the order of
4D 4(0)=4D4*[N 4,0/2n:+ (14N 4,0%/4n2) ]2,

Taking the values of the physical parameters as given
in Sec. ITI, we obtain |o| <2X107¢, which is consistent
with the numerical result given in Sec. III.



